427/Math. 22-23 / 32112

B.Sc. Semester-III Examination, 2022-23 MATHEMATICS [Honours]

Course ID: 32112 Course Code: SH/MTH/302/C-6 **Course Title: Group Theory-I**

Time: 2 Hours Full Marks: 40

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

Notations and symbols have their usual meaning.

UNIT-I

Answer any **five** of the following questions:

 $2 \times 5 = 10$

[Turn Over]

- a) Does \mathbb{R} (the set of all real numbers) form a group with respect to the binary operation * defined by $a*b=2^ab$ for all $a,b\in\mathbb{R}$? Justify your answer.
- Write down the complete Cayley table for the b) Dihedral group D_3 (the group of all symmetries of an equilateral triangle).

- order of Find the the element $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 4 & 6 & 1 & 2 & 3 \end{pmatrix} \text{ in } S_6.$
- Lt (G, \bullet) be a group and $a \in G$ is an element of finite order. Let $a^m = e$ (where e is the identity element of the group G). Then prove that order of a must divide m.
- Write down all non-trivial proper normal subgroups of the group $(\mathbb{Z}_6, +)$.
- Find the order of H if H is a subgroup of some f) group of order 100 and H contains no element of order 2, with H is non-cyclic.
- Prove that $\mathbb{Z}_2 \times \mathbb{Z}_4$ is not cyclic of order 8. g)
- Let G_1 be a non-commutative group $\phi: G_1 \to G_2$ be an epimorphism and $|G_2| \ge 2$. Is G_2 , noncommutative always? Give proper logic in support of your answer.

UNIT-II

2. Answer any **four** of the following questions:

 $5 \times 4 = 20$

In the permutation group S_4 , exhibit explicity, with clarification, a cyclic subgroup H of order 4 and a non-cyclic subgroup K of order 4.

(2)

2+3=5

- b) i) Prove that $(\mathbb{Q}, +)$ is not cyclic.
 - ii) Consider the group $(\mathbb{Q}/\mathbb{Z}, +)$. Prove that for any natural number n, there exists an element of the group of order n. 3+2
- c) Let $f: G \to H$ be an onto homomorphism. Prove that $\frac{G}{Ker f} \cong H$.
- d) Define normal subgroup of a group. Prove that $H = \{A \in GL(2, \mathbb{R}) : |A| \in K\}$ is a normal subgroup of the group $GL(2, \mathbb{R})$ where K is a subgroup of the multiplicative group \mathbb{R}^* of all non-zero real numbers. 1+4=5
- e) If in a group G, $a^5 = e$, $aba^{-1} = b^2$, then find O(b).
- f) If $G = \{a + b\sqrt{2} : a, b \in \mathbb{Q}\}$ and $H = \{\begin{bmatrix} a & 2b \\ b & a \end{bmatrix} : a, b \in \mathbb{Q}\}$,

show that *G* and *H* are isomorphic under addition.

UNIT-III

3. Answer any **one** of the following questions:

$$10 \times 1 = 10$$

a) i) Let G be a group with the property: "for any $x, y, z \in G$, xy = zx implies that y = z."

Prove that G is abelian.

n. (3)

[Turn Over]

- ii) In the symmetric group S_n , prove that the number of even permutations is same as the number of odd permutations.
- iii) Let H be a normal subgroup of a finite group G and $x \in G$. If gcd(|x|, |G/H|) = 1, show that $x \in H$.
- iv) Suppose that there is a homomorphism ϕ from $(\mathbb{Z}_{17}, +)$ to some group G such that ϕ is not one-one. Determine ϕ .

$$2+4+2+2=10$$

- b) i) Compute (with proper clarification) the center of the dihedral group D_4 .
 - ii) Justify whether $(\mathbb{R}, +)$ and (\mathbb{R}^+, \times) are isomorphic, where $(\mathbb{R}, +)$ is the group of all real numbers under addition and (\mathbb{R}^+, \times) is the group of all positive real numbers under multiplication.
 - iii) Prove that $2\mathbb{Z}/16\mathbb{Z}$ is a normal subgroup of $\mathbb{Z}/16\mathbb{Z}$. Hence find the factor group $(\mathbb{Z}/16\mathbb{Z})/(2\mathbb{Z}/16\mathbb{Z})$. 3+3+(2+2)=10
